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Real-World RGB-D Panorama is Still Hard to Obtain 

Real-World Systems 
 has constrains on cost,  power,


 other physics constrains.
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Image Inpainting 
[Pathak et. al]

User-guided view extrapolation [Zhang et al.]

Prior work: Predicting Scene Appearance (Only Colored Pixels)
Learning to Look Around

[Jayaraman and Grauman]
SUN360 scene observation completion examples

GT viewgrid t = 1 t = 2 t = 3 t = 4

Figure 3. Best viewed on pdf with zoom. Episodes of active observation completion for a scene (top) and object (bottom).Column 1 shows the ground
truth viewgrid with a red square around the random starting view. Columns 2-5 show our method’s viewgrid completions for t = 1, . . . , 4 with red
squares around selected views. As the model’s beliefs evolve, the space of possibilities grows more constrained, and the shape of the ground truth
viewgrid begins to emerge. Row 1: The system correctly estimates a flat outdoor scene at t = 1, inferring the position of a horizon and even the sun from
just one view of a gradient in the sky. At t = 2, it sees rocks and sand, and updates the viewgrid to begin resembling a beach. It then continues to focus
on the most interesting (and unpredictable) region of the scene containing the rocks and shrubs. Row 2: The first view is overhead, and azimuthally
aligned with one of the sides of an unseen category object (chair). Our agent chooses to move as far from this view as possible at t = 2, instantly forming
a much more chair-like predicted viewgrid, which continues to improve afterwards.

Table 1. Per-pixel mean squared error (MSE⇥1000) with episode length set to training length T (6 on SUN360, 4 on ModelNet), and
corresponding improvement over 1-view baseline. Lower error and higher improvement is better. RGB (luminance) values in color
(gray) images are normalized to [0,1], so error values are on scale of 0 to 1000.

Dataset! SUN360 ModelNet (seen classes) ModelNet (unseen classes)

Method# — Metric! MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement

1-view 39.40 - 3.83 - 7.38 -
random 31.88 19.09% 3.46 9.66% 6.22 15.72%
large-action 30.76 21.93% 3.44 10.18% 6.16 16.53%
peek-saliency [23] 27.00 31.47% 3.47 9.40% 6.35 13.96%
ours 23.16 41.22% 3.25 15.14% 5.65 23.44%

peek-saliency tests if salient views are informa-
tive for observation completion. Note that this baseline
“peeks” at neighboring views prior to action selection
to measure saliency, giving it an unfair and impossible
advantage over ours and the other baselines.

These baselines all use the same network architecture as
ours, differing only in the exploration policy which we
seek to evaluate.

4.2. Active observation completion results

Tab 1 shows the scene and object completion mean-
squared error on SUN360 and ModelNet (seen and unseen
classes). For these results, episode lengths are held con-
stant to T timesteps (6 on SUN360, 4 on ModelNet), same
as during training. While all the multi-view methods im-
prove over 1-view, our method outperforms all baselines
by large margins. To isolate the impact of view selec-
tion, we report improvement over 1-view for all methods.
Compared to random, ours consistently yields approxi-
mately 2x improvement; our gains over large-action
are also substantial in all cases, meaning that simply look-
ing at well-spaced views is not enough. Both outcomes
highlight the major value in learning to intelligently look

around. Improvements are larger on more difficult datasets,
where errors are larger (SUN360 > ModelNet unseen >
ModelNet seen). This is as expected, since additional views
are most critical where one view produces very poor re-
sults. On SUN360, peek-saliency, which has un-
fair access to neighboring views for action selection, is the
strongest baseline, but still falls short of ours. On Mod-
elNet data, peek-saliency performs poorly, likely be-
cause saliency fails to differentiate well between the syn-
thetic CAD model views; what is informative about an ob-
ject’s shape is much more complex than what low-level un-
supervised saliency can measure. Importantly, our advan-
tages hold even for unseen categories (rightmost), empha-
sizing the task-independence of our look-around policies.

Does our approach simply exploit its knowledge of cam-
era elevation to sample useful elevations more than others?
For instance, perhaps views from a horizontal camera posi-
tion (elevation 0°) are more informative than others. Upon
investigation, we find that this is not the case in practice.
In particular, our learned policy samples all elevations uni-
formly on both SUN360 and ModelNet data. Hence, the
ability to sense gravity alone offers no advantage over the
random baseline.

Stitching images from the Internet. [Qi et al.]

Hard to be used directly to support high level planning
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Key idea
Key idea:  Indoor environments are often highly structured.  
By learning over the statistics of many typical scenes, the model should be 
able to leverage strong contextual cues inside the image to predict what 
is beyond the FoV.

Data of indoor 
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Real-Word Houses (Matterport3D): 
5,315 RGB-D panoramas 

Fine-tune and test

Synthetic Houses (SUNCG):
58,866 RGB-D panoramas 

Pre-train  

3D House Datasets

Training data
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Plane Distance to Origin (p)

Plane Equation: 
ax+by+cz-p=0 

✓Pixels on the same planar surface share the 
same plane equation.

✓Representation is piecewise constant in a 
typical indoor environment.

Surface Normal (a,b,c)

Data Representation
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Training Objectives
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Real Rooms Adversarial loss 

Goodfellow et al. 2014
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Lighting Prediction for Indoor Environments
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Illumination Estimation
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Output: Illumination map

Requires a comprehensive understanding of the environment, 

in order to predict a complete illumination map from a partial RGB observation.
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Illumination Estimation

Input: Image+Selected pixel

+locale

Output: Illumination map

• The 3D location of the selected pixel

• The distribution of unobserved light sources
• The occlusions caused by scene geometry

• The missing high dynamic range information



Prior work

Gardner et al.
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Each sub-module is able to focus on a relatively easier task 

and can be trained with direct supervision.
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Training Data Generation
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Training Data Generation

Overall, we generate >90K  locales and >360K illumination pairs 
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We are looking for PhDs and Post-docs!
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