Comprehensive 3D Scene Understanding Beyond the Field of View

Shuran Song

Princeton -> Google -> Columbia

Comprehensive 3D Scene Understanding

Partial Observation of the Environment

Complete Representation of the 3D Scene

Comprehensive 3D Scene Understanding

Partial Observation of the Environment

Complete Representation of the 3D Scene

Sensors

Sensors

Partial Observation

Top-down View

Partial Observation

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• ...

Partial Observation

Amodal 3D **Bounding Boxes** [Song and Xiao ECCV'14,CVPR'16]

Higher Fidelity 3D Voxels [Song et al. CVPR'17]

Beyond FoV Semantics&Structure [Song et al. CVPR'18]

Beyond FoV Illumination [Song and Funkhouser]

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• . . .

Amodal 3D **Bounding Boxes** [Song and Xiao ECCV'14,CVPR'16]

Sliding Shapes [ECCV'14] Deep Sliding Shapes [CVPR'16]

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• ...

Amodal 3D **Bounding Boxes** [Song and Xiao ECCV'14,CVPR'16]

Higher Fidelity 3D Voxels [Song et al. CVPR'17]

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• . . .

Higher Fidelity 3D Voxels [Song et al. CVPR'17]

3D Voxel Grid Track Semantics Category

- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• ...

Amodal 3D **Bounding Boxes** [Song and Xiao ECCV'14,CVPR'16]

Higher Fidelity 3D Voxels [Song et al. CVPR'17]

3D Voxel Grid Track

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• . . .

Amodal 3D **Bounding Boxes** [Song and Xiao ECCV'14,CVPR'16]

Higher Fidelity 3D Voxels [Song et al. CVPR'17]

Beyond FoV Semantics&Structure [Song et al. CVPR'18]

Beyond FoV Illumination [Song and Funkhouser]

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• . . .

Im2Pano3D:

Extrapolating 360° Structure and Semantics Beyond the Field of View Shuran Song, Andy Zeng, Angel X. Chang, Manolis Savva, Silvio Savarese, and Thomas Funkhouser

Real-World RGB-D Panorama is Still Hard to Obtain

Matterport Camera

Expensive Device + Time consuming process

Real-World Systems has constrains on cost, power, other physics constrains.

Training

Cheap Devices RGB-D image with limited FOV

Testing

Complete surrounding environment

Prior work: Predicting Scene Appearance (Only Colored Pixels)

Input: RGB-D images

Output1: 3D Structures

Output2: Semantics

Where can I move?

Where should I turn to find a door?

Output1: 3D Structures

Output2: Semantics

Semantic-Structure View Extrapolation

Input: RGB-D images

Input: RGB-D images

Nightstand-

Bed

Output: 360° panorama with 3D structure & semantics

Semantic-Structure View Extrapolation

Input: RGB-D images

Nightstand

Bed

Output: 360° panorama with 3D structure & semantics

Behind camera

Key idea

Key idea: Indoor environments are often **highly structured**. By learning over the statistics of many typical scenes, the model should be able to leverage **strong contextual cues** inside the image to predict what is beyond the FoV.

Data of indoor environments

Training data

3D House Datasets

Synthetic Houses (SUNCG):

58,866 RGB-D panoramas Pre-train

Real-Word Houses (Matterport3D): 5,315 RGB-D panoramas Fine-tune and test

3D Room

360 Degree FoV

Color Panorama

Depth Panorama

Surface Normal (a,b,c)

Plane Distance to Origin (p)

Depth Panorama

Surface Normal (a,b,c)

Plane Distance to Origin (p)

✓ Pixels on the same planar surface share the same plane equation.

✓ Representation is piecewise constant in a typical indoor environment.

Raw Depth Representation

Prediction

Observation

Plane Representation

Im2Pano3D Network

color

What training objectives should we use?

semantics

Training Objectives

Training Objectives

Prediction

Ground truth

Training Objectives

Every Pixel is Correct

 L_{recon}

Training Objectives

Similar Scene Attribute

Prediction is Plausible

 $L_{attribute}$

 L_{adv}

$L = \lambda_1 L_{recon} + \lambda_2 L_{attribute} + \lambda_3 L_{adv}$

Results Input Observation

Results

Ground truth

Results

Ground truth

Results

Ground truth

Input Observation

Camera Configurations in real platforms RGB pano **One RGB-D One RGB-D+motion** Three RGB-D

Device

Not Available

Camera Configurations

Three RGB-D

One RGB-D

wall

floor

One RGB-D+motion

RGB pano

object (

Advances Towards 3D Scene Understanding

Amodal 3D **Bounding Boxes** [Song and Xiao ECCV'14,CVPR'16]

Higher Fidelity 3D Voxels [Song et al. CVPR'17]

Beyond FoV Semantics&Structure [Song et al. CVPR'18]

Beyond FoV Illumination [Song and Funkhouser]

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Lighting information
- Surface materials
- Phys. Properties

• . . .

Neural Illumination Lighting Prediction for Indoor Environments Shuran Song and Thomas Funkhouser

Input: Image + Selected pixel

Neural Illumination

Neural Illumination

Input: Image + Selected pixel

Goal: output estimated the incoming light from all directions to the selected locale

Input: Image + Selected pixel

Neural Illumination

360°

Goal: estimating the incoming light from all directions to the selected locale

180°

Neural Illumination

Virtual Object Relighting

Goal: estimating the incoming light from all directions to the selected locale

Input: Image+Selected pixel

Requires a **comprehensive** understanding of the environment,

Output: Illumination map

in order to predict a *complete* illumination map from a *partial* RGB observation.

Input: Image+Selected pixel

• The 3D location of the selected pixel

Input: Image+Selected pixel

- The 3D location of the selected pixel
- The occluded light source caused by scene geometry

Input: Image+Selected pixel

- The 3D location of the selected pixel
- The occluded light source caused by scene geometry
- The distribution of unobserved light sources

Input: Image+Selected pixel

- The 3D location of the selected pixel
- The occlusions caused by scene geometry
- The distribution of unobserved light sources
- The missing high dynamic range information

Input: Image+selected pixel A Single Black-Box Network

Prior work

Output: HDR Illumination map

Gardner et al.

Input: Image+selected pixel

Neural Illumination

network

network

Output: HDR Illumination map

Each sub-module is able to focus on a relatively easier task and can be trained with direct supervision.

Neural Illumination

Geometry estimation

Differentiable warping

Input: Image+selected pixel

Surface normal

Neural Illumination

LDR completion network

LDR to HDR network

Output: HDR Illumination map

Warped LDR observation

Geometry estimation

Differentiable warping

Input: Image+selected pixel

Warped LDR observation

observed

Neural Illumination

LDR completion network

LDR to HDR network

Output: HDR Illumination map

Completed LDR observation

- L2 loss
- Adversarial loss

warping

Input: Image+selected pixel

Completed LDR observation

estimation

Neural Illumination

network

network

Output: HDR Illumination map

HDR light intensities

- L2 loss
- → diffuse conv loss

Input: Image+selected pixel

Surface normal

Plane distance

Fine-tuned End to End

Neural Illumination

LDR completion network

LDR to HDR network

Output: HDR Illumination map

Warped LDR observation

Warped LDR observation

Differentiable

warping

Input: Image+selected pixel

Surface normal

Plane distance

Neural Illumination

LDR completion network

LDR to HDR network

Output: HDR Illumination map

Warped LDR observation

Warped LDR observation

HDR illumination estimation

Pixel-to-pixel spatial correspondence

HDR RGB-D panoramas throughout 90 houses

Input: Image+selected pixel

. . .

LDR images+target pixel

Output HDR illumination map

Overall, we generate >90K locales and >360K illumination pairs

Input: LDR images+selected pixel

Gardner et al.

Input: LDR images+selected pixel

Ground truth

Ours

Groundtruth

Ours

Gardner et al.

Gardner et al.

Advances Towards 3D Scene Understanding

Amodal 3D **Bounding Boxes** [Song and Xiao ECCV'14,CVPR'16]

Higher Fidelity 3D Voxels [Song et al. CVPR'17]

Beyond FoV Semantics&Structure [Song et al. CVPR'18]

Beyond FoV Illumination [Song and Funkhouser]

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. Properties
- Dynamics

Advances Towards 3D Scene Understanding

Amodal 3D

Beyond FoV

Higher Fidelity

Passive Observers

Beyond FoV Illumination

What's Next??

Active Explorers

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. Properties
- Dynamics

Richer Representation through Interaction

Active Exploration

+ Most useful observation

Richer Representation through Interaction

Active Exploration

Partial Observation

3D Scene Prior

Efficient exploration + Most useful observation

Actions: Poking, Grasping

Physical properties: Surface material Friction coefficient

Active physical Interaction

Richer Representation through Interaction

Active Exploration

Partial Observation

Efficient Exploration + Most useful observation

Actions: Pushing, Grasping

Physical properties: Surface material Friction coefficient

Active physical Interaction

Actions: Tossing

Physical properties: Mass distribution, Aerodynamic

Comprehensive 3D Scene Understanding

Amodal 3D

Beyond FoV

Higher Fidelity

Beyond FoV Illumination

Passive Observers

What's Next??

Active Explorer

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. Properties
- Dynamics

Comprehensive 3D Scene Understanding

Amodal 3 We are looking for PhDs and Post-docs! COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Passive Observers

Illumination

Active Explorer

- Semantics Category
- 3D Location, Size
- Detailed Geometry
- Inter-Object Relationships
- Not Limited by FoV
- Action Affordances
- Phys. Properties
- Dynamics

Acknowledgements

Collaborators

Ferran Alet Maria Bauza Angel Chang Nikhil Chavan Dafle Elliott Donlon Nima Fazeli Matthew Fisher Thomas Funkhouser Druck Green Leonidas Guibas Pat Hanrahan Francois R. Hogan Rachel Holladay Qixing Huang Hailin Jin Joon-Young Lee Zimo Li Melody Liu Weber Liu Daolin Ma

Funding: NSF, Google, Intel, Facebook

Isabella Morona Prem Qu Nair Matthias Nießner Alberto Rodriguez Eudald Romo Silvio Savarese Manolis Savva Ari Seff Hao Su Orion Taylor lan Taylor Zhirong Wu Jianxiong Xiao Li Yi Kuan-Ting Yu Fisher Yu Fisher Yu Ersin Yumer Andy Zeng Linguang Zhang Yinda Zhang

Thank You!